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HIGHLIGHTS

« A novel memory-based dynamic event-triggered mechanism is introduced, integrating past release information and a dynamic parameter updating law to optimize
resource utilization under deception attacks.

« The proposed mechanism leverages historical triggering data and errors, improving adaptability to random attacks and unexpected disturbances while facilitating
efficient network data transmission.

« The control strategy enhances driving comfort and safety by ensuring mean square asymptotic stability and H_, control performance, validated through Carsim and
Matlab simulations.

ARTICLE INFO ABSTRACT

Keywords: This study deals with the issue of a memory-based dynamic event-triggered control strategy for active quarter-
Memory-based dynamic ETM vehicle suspension systems (QVSSs). The main objective is to design an effective event-triggered mechanism
Deception attacks (ETM) that ensures suspension performance while reducing network resource usage, even under deception at-

Quarter-vehicle suspension systems tacks. To this end, an innovative memory-based dynamic ETM is proposed to coordinate sensor data transmission

efficiently in the presence of such attacks. The proposed transmission scheme integrates historical release in-
formation, which helps suppress false triggering by utilizing averaged data. Additionally, the proposed ETM
dynamically updates triggering conditions over time, facilitating dynamic scheduling of network data transmis-
sion. Sufficient conditions are derived to guarantee satisfactory performance of the QVSS under the proposed
control strategy. A numerical example is provided to validate the effectiveness of the approach.

1. Introduction necessitating the use of advanced suspension designs and intelligent
control strategies to achieve an optimal balance under complex driving
conditions [4].

SS are generally classified into passive, semi-active, and active types,
each of which differs according to the inclusion of controllable com-
ponents. Passive SSs, which lack such components, typically consist
of a fixed spring and a damper with a constant damping coefficient.
While simple and reliable, they are inadequate for meeting the con-
flicting performance requirements of ride comfort, suspension stroke,
and road holding. Semi-active SSs offer a compromise by integrating
controllable damping components that continuously adjust the energy

Vehicle suspension systems (SSs) have gained significant attention
over the past few decades due to their crucial role in ensuring both
driving comfort and safety [1-3]. The development of vehicle SSs typ-
ically targets three key performance criteria: ride comfort, suspension
stroke, and road holding. Ride comfort is primarily associated with the
vertical acceleration of the vehicle body in response to road irregulari-
ties. Road holding refers to the suspension system’s ability to maintain
consistent and secure contact between the tires and the road surface.
Suspension stroke denotes the allowable range of motion for the vehicle
chassis. However, these requirements often conflict with one another,
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dissipation rate, thereby enhancing comfort and road contact. However,
their performance is limited by the absence of external actuation forces
and a narrow effective frequency range. In contrast, active SSs employ
fast-response actuators to dynamically generate vertical forces in real
time, significantly improving handling performance across various road
and load conditions. Due to fewer physical constraints and a flexible
structure, active SSs are widely regarded as superior to both passive
and semi-active systems, particularly owing to their use of linear force
actuators [5,6]. As a result, numerous control strategies have been de-
veloped for actuator regulation in active SSs, including fuzzy control
[7-9], sliding-mode control [10,11], and backstepping control [12,13],
among others.

The rapid advancement of communication technologies has led to the
emergence of networked SS. This evolution introduces new challenges
for traditional control strategies. In [14], a resilient event-triggered
H_, controller was designed for QVSSs under periodic denial-of-service
(DoS) attacks. Similarly, an event-based fuzzy controller was proposed
for networked five-degree-of-freedom semi-vehicle SSs in [15], address-
ing the impact of DoS attacks on wireless networks. To cope with
the nonlinearities and uncertainties inherent in cloud-aided full-vehicle
SSs, an adaptive backstepping control approach was developed in [13].
Notably, the controller in [13] leverages a cloud-based master com-
puting server, which considers multiple factors including aggregated
vehicle data, road conditions, and reference trajectories stored in the
cloud.

A critical challenge in the research of networked SSs lies in the limita-
tion of network bandwidth. This issue becomes particularly prominent
in networked control systems. ETMs have gained significant attention
as an effective solution to this challenge [16-20]. In [21], sampled
data packets are selectively transmitted over the network only when
a predefined triggering condition is satisfied, allowing for more efficient
bandwidth usage and substantial savings. To further reduce redundant
data transmission between sensors and controllers and to mitigate the
adverse effects of asynchronous switching and denial-of-service (DoS)
attacks, a resilient adaptive event-triggered strategy was proposed for
networked switched systems in [22]. ETMs have also been applied to
various control problems in networked SSs, including event-triggered re-
liable finite-frequency control [23], event-triggered adaptive fixed-time
fuzzy control [24], and memory-event-trigger-based secure control [25].
As research in this area has advanced, several innovative ETMs have
emerged, such as memory-based ETMs [26], adaptive ETMs [27], and
dynamic ETMs [28,29]. Nevertheless, the application of these advanced
ETM strategies to networked SSs has received limited attention, thereby
serving as a key motivation for this study.

Since the data received by the controller is transmitted via the
network, ensuring the reliability and security of this information is
crucial—particularly in the face of cyber-attacks targeting the network
infrastructure [30-32]. Among various attack strategies, deception at-
tacks are especially concerning. This type of attack typically involves
the interception and manipulation of transmitted information, leading
remote nodes to process false or misleading data. Deceptive signals often
infiltrate multiple communication channels, making them highly covert
and difficult to detect. In [33], a dynamic output feedback controller was
proposed to counter deception attacks in discrete-time stochastic nonlin-
ear systems. A more comprehensive scenario was studied in [34], where
deception attacks affect both sensor—observer and controller-actuator
communication paths, with a variety of deceptive signals launched in
a stochastic manner. Such attacks pose a significant threat to the per-
formance and stability of networked SSs. Therefore, it is imperative to
thoroughly investigate the resilience and behavior of networked SSs un-
der deception attacks, which constitutes another key motivation for this
study.

Motivated by the above discussion, this paper investigates the prob-
lem of memory-based dynamic event-triggered control for active SSs
under deception attacks. The main contributions of this work are
summarized as follows:
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(1) This paper proposes a novel memory-based dynamic ETM to ensure
the performance of active QVSSs while reducing resource utiliza-
tion under deception attacks. The proposed ETM utilizes past release
information as input, thereby reducing false-triggered events by in-
corporating average historical data. In contrast to the memory-based
ETMs presented in [20,26], this work introduces a new dynamic
parameter updating law. Moreover, historical triggering data are
embedded within the updating law, which significantly enhances
the dynamic scheduling of network data transmission. In addition,
the event-triggering condition incorporates historical error infor-
mation, improving sensitivity to random attacks and unexpected
disturbances.

(2) The proposed memory-based dynamic ETM enhances both driv-
ing comfort and safety for active QVSSs operating under deception
attacks. The control strategy effectively optimizes the data transmis-
sion workload and transmitted information, while ensuring mean
square asymptotic stability and achieving desired H_, control perfor-
mance. Simulation results validate the effectiveness of the proposed
protocol in meeting the dual objectives of driving safety and ride
comfort.

The subsequent sections of this paper present a summary of its con-
tents. In Section 2, we provide the problem formulation. The controller
design for networked active QVSSs against deception attacks is ex-
pounded in Section 3. To demonstrate the effectiveness of our method,
a simulation example is presented in Section 4. Finally, we conclude the
paper with a summary in Section 5.

2. Problem formulation
2.1. System description and performance indices

The following active QVSS structure [8] is widely adopted for its
ability to capture the essential characteristics of suspension systems.

x(t) = Ax(t) + Bu(t) + Da(t)
z(t) = Cyx(t) + Dyu(r)
z5(t) = Cyx(1)

@)

where
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The terminologies of the SS refer to [15].

2.2. Performance indices

Drawing parallels with the work of [15], the following critical indices
considering ride comfort, suspension deflection, and road holding are
presented, as elaborated in Table 1.

In Table 1, the quantity % (r) appearing in index (i) corresponds to
the body acceleration, illustrating the dynamic response of the system.
The second index and the third index pertain to the analysis of the
mechanical structure’s stroke and the assessment of driving stability,
respectively. The parameter z,,,, represents the prescribed admissible
stroke of the mechanical structure, (m, + m,)g denotes the static load,
and g symbolizes the gravity acceleration.
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Table 1
Critical indices of the QVSS.

Performance Indicator

@) Ride comfort
(iD)

(iii)

{1201} <rE{ oo, }
B 12,0-201 | £z
B{k( 20 = 2,@) | } < (m, +m)g

Suspension stroke

Road holding

2.3. Communication strategy

Notice that the control data of SSs, communicated through the
wireless network, can lead to challenges related to limited network re-
sources and vulnerabilities to deception attacks. Here, we present a new
memory-based dynamic ETM to alleviate the strain on communication
resources and enhance resilience against deception attacks.

2.3.1. Memory-based dynamic ETM
Before proposing the memory-based dynamic ETM to address the
aforementioned challenge, we define

Xty ) + x(th + L)
2
en(1) = Xty h) = Xty 1 h)s

(i1 h) = . me {1,2,3},
1 3
90 =3 %x(rk_m+lh),

9,1(1) = ey (1) — €1 (1), 9,2 (1) = e5(1) — ey (1)
8(1) = 8,97 (V@I (1) + 5,(9T, (VDI (1) + T, (DI, (1)),

3
W) =Y Anen (e, (1) - (1)

m=1

(2)

where h represents the sampling period, and {7, 4};7 ; denotes the mono-
tonically increasing sequence of release instants. The parameters §,, 5,
and 4,, are predetermined weighting scalars, while ® corresponds to the
weighting matrix.

Subsequently, the next release instant can be defined by

tk+1h:tkh+max{(l+ Dh | w() < %/}(z)} 3

where f(t) = —af(t) — oy (1) for t € [ty h,t,, 1 h), with a > 1 >0,0>0,
K

and $(0) = f, > 0. It implies that when designed condition y(r) < lﬂ(z)
K

is violated, the packet at such sampling instant becomes necessary for
controlling the SS, but the packets at times 7,4 + [h are disregarded,

where I =1,2,...,1 2 max [, fort € [tyh,t; h).

Ky (D<p(t)
Remark 1. From (2), it is evident that the historical triggering data
x(t;_ne1h), where m € 1,2,3, are incorporated into the ETM design,
offering several notable advantages: it helps mitigate false-triggering
events caused by sudden and unintended state variations, such as gross
measurement errors; furthermore, it facilitates a smoother and more
gradual release process.

Remark 2. Incorporating additional historical packets into the ETM
input increases storage and computational demands. To balance compu-
tational cost and performance, the number of historical triggering data
packets is limited to three in this study, i.e., m =3, and m € 1,2,3.

Remark 3. The item 6,(97, (N®9,,(1) + 97, ()Y, (1)) in (3) uses the error
of historical triggering information, which can enhance the sensibility
to random attacks and unknown disturbances.

Remark 4. The proposed memory-based dynamic ETM mainly com-
prises two main components: a memory-based event triggering law and
a dynamic parameter updating law. By incorporating 4(z) in (5), system
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designers are granted the flexibility to specify positive constants a, k, ¢
as desired. This empowers them to schedule the transmission rate over
specific time intervals, reducing network resource waste.

2.3.2. State feedback secure control
In light of the presented memory-based dynamic ETM in (3), the state
feedback control law is given:

3
() = Y KXty 1 D), 1 € [+ M, i B+ 1)

m=1

4

where 7, is the network-induce delay at instant #, h.

Considering the potential influence of attacks on the transmitted sig-

nal, we establish the following model to represent the data received by
the controller:
Xt mmir ) = @yt DR 1) + (1= €Wy )XW 1 1) (5)
Remark 5. The control signal becomes susceptible to potential at-
tacks upon its transmission through the network. Adversarial elements
exploit this vulnerability by surreptitiously injecting spurious data de-
noted as R(¢) into the transmitting signal. In order to elude detection, the
attack signal is meticulously generated in a stochastic manner, concur-
rently with the intentional omission of certain transmitted signals. R(z)
is assumed to satisfy [26]

[IROIl, < [ILx®)]],- (6)
Consequently, the actual control input can be formulated as:
3 3
ut) = 3" (1 = @ty t KXt yir D)+ Y, @ty yit DK Ry 1)
m=1 m=1 -

in which a(f) means a stochastic variable that adheres to a Gaussian
distribution with mean a and variance a.

2.4. The closed-loop quarter-vehicle suspension control system

Define n(t) = t—tyh—Ih for t € [tyh+1h+n,, 1, h+1h+h+n+k+ 1)
Consequently, the following inequality is obtained:

0<nt) <h+n=ny. (8)
From (2) and (8), we can deduce that:
X(tg— i1 ) = x(t = n(1)) + 2e,,(1). 9

Combining Egs. (1), (7), and (9), we can derive the closed-loop active
QVSS model as

3
=Y [Ax(t) + (1= alty_ps1)BK,x(t — (1))

m=1
+ (1 = @ty 1))2BK e, (1)
+ Q141 BK Ry 1) + Do)

3 10)
210 = X [Crx+ (1 = @l DDy Kyt = (1)
m=1

+ (1= alty_py)2Dy Ky (1)
+ &ty WD Ky Ry h)]
(1) = Cox(1).

Next, we will design the suspension control based on the above
memory-based dynamic ETM for the active QVSS in (10) against de-
ception attacks.
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3. Memory-based dynamic ETM for QVSSs

In this section, we will obtain sufficient conditions to ensure the con-
trol performance of active QVSSs under memory-based dynamic ETM
against deception attacks.

Theorem 1. Given positive scalars A,,, 1y, @, &, a, , o, and §; (i € 1,2),
as well as the matrix K,, ( m € {1,2,3}), the system (10) is mean square
asymptotically stable (MSAS) and satisfies the H ,, performance indices listed
in Table 1, if there exist matrices P > 0, Q > 0, R > 0, and ® > 0 such that

¥ <0, an
-1 *
<0, (m=12 12
[\/V{Cz}f _P] (n ) 12)
R>0 (13)
where
Y=Y + ¥, ¥ = [y, = ATP+ PA+Q —4R,
3
My = ) (1—a) K. B"P)-2R—H] — H,- H] - H],
m=1
My, =u®-8R+H] +H, - H] — Hj,
Iy = H — Hy+ H! — HI Tl;3 = -0 — 4R,
My, =—-2R-H| + H,+ H] — HY,
_ 2
M3 = 21— 0)K! BT P 11,3, = S
4 4
Iy = (‘#31 + §M1) .15y = <§M1 +#2) @,
4 4
Hss = (—ﬂsz t ok —2.“2) @, Iy = (5#1 —ﬂz) 04®,
4 4
Mgs = (5#1 +I42) @, Mg = (—ﬂss + 5#1) @,11;; = 6R,
My, = 6R+2H, +2H3, 153 = —2H, + 2Hj;,
M7 =Tlgg = —12R,Tlg; = 2H, + H] ,Tly; = 6R,
Mg, = 6R — 2H, + 2H] Tlg; = —4H] T3, = —°1,
Houisyt = @K BT P 1y 5ym48) = —P. 111y = D' P,
=1 +0)81, 1y = (1 +0)53, p3p, = (1 +0)4,,,
¥, =y, ATRA+ 53, B"RB+C"C+ D' PD,
A=A d1-»%8, 0 20-1%8, 0 0 &k, D,
B=[0 a%, 0 2%, 0 0 a%, 0],
c=[c, -2, 0 20-02, 0 0 a2z, 0,
H * N R 0
D=|V3LO0 ..0[,H=|] ,R= ,
\/_ ~—— [Hz HS] [0 3 R]
11
: R«
%, =mz=“lBKm,% =[BK, BK, BK;].R= [HT ﬁ] .
3
P, =) DK,.2,=[D,K;, DK, DKs.
m=1
Proof. Construct the following Lyapunov-Krasovskii functional:
t
V(@) = xT ) Px(t) + / xT(5)0x(s)ds
=Ny (14)

t t
iy / / %" (W)Rx(v)dvds + ().
t=np Js

Then, we have
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E{V()} < E{ZXT(I)PX(I) +xT(1)0x(t) = x" (1 = np)OX(t = npp)

t
+ 12, 3T (ORX(1) = myy / *T(s)Rx(s)ds + ﬁ'(z)}. (15)
=Ny

Drawing upon the triggering condition in (2) and considering the
constraints of deception attacks in (6), we can deduce that

E{V () < E{ZXT(I)PX(I) +x(O0x(1) = x" (t = 1y )OX(t = npp)

t
+ 13, 3T (ORx(t) — / T (s)Rx(s)ds
=Ny

w

- [ I Uit DYPR( i h) — 3xT(t)LTPLx(t)]
+(

For the sake of clarity and brevity, we define

= a) B0 = oy () — w(t) + 2 0z, - e Vo) }.
16)

A=

C(0) = col{ &1 (1), £(1), §p1 (1), o (1), L (), (D)}, Q; = T,E (D), (i = 1,2,3,4),
Q) = col{Q,9,},Q, = col {Q,Q,),
Ty=[ =10 0, T,=[IT10..0=2[0 - 0],
—— —— ——
10 4 5

T3=[01-10:-0,T,=[0110:-0-2I0...0]
N—— N~—— N——
9 4 4

with £;(1) = col{x(1), x(t = n(1),x(t = npp)}, L (1) = col{e (1), ey(t), e3(D},

La® = o5 [l X@ds, G = L [ENx(9)ds, G0 =
col {N(t, h), (1, _ h), R(t,_yh)}.
In light of the characteristics of «, it yields that
E{xT(ORx(t)} = {T(0)(AT RA + BT RB),(1). a7
Using the Wirtinger inequality in [35], one can obtain
t N A A n
— / T (s)Ri(s)ds < ——LQT RO, (18)
t—n(t) n(t)
=) M Apoan
— iy / T ()Rx(s)ds < ————QT RO, (19)
=Ny iy — 1)

where R = diag{R,3R}.
Wirtinger inequality methods [36] to (18) and (19), it can be inferred
that

t
-y / T (s)Rx(s)ds
t=npp

1=n(1)

t
=—r/M/ )'cT(s)RX(s)a's—nM/
1=(t) 1=ny
M 5
~ AT MR 0 N
<& |0 2
) 0 TR Y} [oX
A T N
<_ | R &
I () &

———— R
Ny — 1)
From (16), (17) and (20), it results in

T (s)Rx(s)ds

(20)

E{V(l)} < E{CT(f)HC(f)}- (21)
Then, (11) and (13) guarantee that

E{V(") + 2L ()2, (1) — P20’ (Do)} < 0 (22)
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Define v = inf{V(0) + /()’[z{(r)zl(z) — 20T (Ho(t)]dt} with t > 0.
Combining (14) and (22) yields that

xT () Px(t) < v. (23)

To satisfy the indices (ii) and (iii) depicted in Table 1, it is imperative
that the following condition be met:

HzoO},] <1 (n € {1,2}), (24)

where z,(1), signifies the n-th row of z,(7).
From (23), we have

T O(C)T(Cy ) x(0) = xT ())P2 P2 {C)T(Cy), P72 P2 x(0)
1 1
< | PTHCNTC), P72 T 0P (25)
< | VPO, PR

where {C,}, denotes the n-th row of C,.
Applying Schur complement to (12) results in the following:

=

_1 _
VP, GG, P R < T

Consequently, we can derive the following inequality
max {20}, 17 < max ||x" (){Cy ) (Co}, x Ol S T, (26)

which implies that (24) is held, thereby ensuring indices (ii) and (iii) in
Table 1. This completes the proof. O

Theorem 2. Given the positive scalars 1y, a,dx,0,¢ and 6;, 4,, with i €
{1,2},m € {1,2,3}, the system (10) is MSAS and satisfies H, performance
indices in Table 1, if there exist matrices X > 0,0 > 0,R > 0, M > 0 and
® > 0 such that

é) * *
Y=|¢ -1 * | <O, @7
D 0 -X
-1 *
<0, n=1,2 28
[\/UX{cz}Z —X] (=12 @
R=|R ilso @9
AT R
where
li‘l k%
O=[nyA E | ¥=¥.% =
B 0 E
M, = XAT + AX + 0 - 4R,

Iy, = 2(1 —a(! B -2R-A] - H,- 0] - A7,
m=1

M, =u®-8R+H +H - H] - Hj,

I, = A — Hy + A] — H] ,Tl;; =—-0 - 4R,

M, =-2R-H] + A, + H] - H]

} ) _ 2 .
T3y =21 = @)Y, BT M50 = 1P,

. 4 N\~ - 4 .

My = (—Mal + 5#1) D, 15, = (5/41 +M2) D,

. 4 Lo 4 .
Iss = (‘Msz tok T 2/42) ,1lgy = (5#1 - 142) 049,
. 4 - 4 N\ - o
es = (5#1 + ﬂz) @, Ilg = (—ﬂ33 + §M1>¢’H71 =6R,
M, = 6R+2H, +2H;,T;; = -2H, + 2H;,
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M, = Mgy = —12R Iy, = 2H, + AT,

Mgy = 6R — 2, + 2A] Tlgy = 6R, Mgy = -4,
)1 = @Y,y BY Tigymes) = =P, Ty = DT P,

My, = —y21,E = 2R - 2¢X,

A=[Ax (-v%, 0 20-1%, 0 0 a%b, D,
B=[0 a%, 0 2a%, 0 0 &%, 0,

C=[c, -9 0 20-F, 0 0 a2 0,

_ z_li 0 ~_l:ll %
D=[v3Lx 0 ... 0 ,R—[O 3]‘,}],H_[~ }

3
B, = Z BY,.%,=[BY, BY, BY],

3

=) D\Y,.9,=[D\Y, DY, DY.

Furthermore, the designed controller feedback gain and triggering matrix can
be computed by K,, =Y, X!, ® = X" 1dx~1.

Proof. Consider the following definitions:

- [aA
y=diagdX, ..., X, I,....1 ,H=[~1 ik],
—— —— H, Hj
11 5
H,=XH X, H,=XH] X Hy;=XH] X,R=XRX,
0=X0X,Y,=K,X,0o=XPX,X =P\

Using Schur complement [37] to (11), one can obtain that

0 *
c -I * [<0 (30)
D 0 -pP!
¥, * ®
where ® = |7, A —R7! *
ny B 0 —R™!

Note that R~! < —2¢X + 2R, then we can conclude that (27) serves
as a sufficient condition to ensure the validity of (30) by both left-
and right-multiplying (30) with the matrix y. Following the similar
operation, one can derive (28) and (29). The proof is completed. O

4. Simulation example

The effectiveness of the proposed approach is demonstrated in this
section. Fig. 1 depicts the structure of a QVSS, with its dynamics de-
scribed by (1). Based on the full-vehicle suspension system model of a

Vehicle

—F—

Suspension

|
X
Wheel

—f—

Tyre

v

Fig. 1. Structure of a QVSS.
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Table 2

QVSS model parameter.
Terminologies Value Terminologies Value
my (kg) 350 m, (kg) 100
k, (kKN/m) 30 k, (kN/m) 200
¢, (kNs/m) 1.2 ¢, (Ns/m) 160

D-class vehicle and commonly used parameters for a simplified QVSS in
[4,7], the relevant parameters are listed in Table 2.

Choose » = 001 s, y = 30, 6§ = 001,85 = 0l =
01,4, = 05,4, = 03,43 = 02,6 = 09,6, = 1, npy = 007, =
0.1,a = 03, z,, = 0.03. Assume the deception attacks RN(r) =

[~tanh(0.35x, (1)), — tanh(0.3x, (1)), — tanh(0.25x5 (1)), — tanh(0.45x,(r))], and
L = diag{0.35,0.3,0.25,0.45}.

Similar to previous works [15], we employ the road profile z,(¢) to
replicate varied road conditions with different frequencies for the QVSS.

z,(t) = 0.02sin 2zt 4+ 0.001 sin 10zt + 0.001 sin 16x¢. 31D

From Theorem 2, the parameter matrix ®, K;,K,, and K; can be
derived as

14972 02282 —0.1235  0.0170
O 10| 02282 8446 —0.4465  0.0266
- ~0.1235  -0.4465 0.1821  —0.0023 [’
0.0170  0.0266 —0.0023  0.0043
K, = [189.4800 882.8504 -275.1329 —53820],
K, = [98.3761 4952638 —150.6537 —3.4445],
K; = [89.3595 3814276 —122.3645 —1.9238].

Figs. 2-4 represent the responses of the QVSS, where the blue solid
lines represent the body acceleration, suspension deflection, and tire
deflection—corresponding to ride comfort, suspension stroke, and road
holding in Table 1—under the influence of the road profile (31), and the
passive SSs are represented by the red dashed lines. These figures demon-
strate that the performance indices in Table 1 are effectively maintained
at satisfactory levels, even in the presence of random deception attacks.

Furthermore, the release intervals in Fig. 5 demonstrate that the
proposed ETM discards a significant number of data packets, highlight-
ing its efficiency in resource optimization. The incorporation of past
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release information as input in the ETM is crucial in reducing false-
triggered events by leveraging average information. Additionally, the
dynamic variable in the triggering laws, shown in Fig. 6, is continu-
ously adjusted over time, enabling adaptive scheduling of network data
transmission. This strategy effectively optimizes the data transmission
workload, enhancing overall system performance.

By choosing g, =0, o =0, and §, = 0, the proposed DMETM will re-
duce to be an memory-based ETM in [26]. Keeping all other parameters
unchanged, by Theorem 2, the parameter matrix ®, K,K,, and K3 can
be derived as:

1.6188 02277 —0.1376  0.0187
oo 10t x| 02277 92593 —04950  0.0291
a -0.1376  —0.4950 02013  —0.0025]’
0.0187  0.0291  —0.0025  0.0047
K, = [181.5457 868.2795 —268.7001 —5.5009],
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—157.9605
—122.1391

K, =[105.4707 5132914
K; = [88.7311  380.9043

-3.3516] ,
-1.9263].

Fig. 7 illustrates the release intervals of QVSSs under the memory-
based ETM in [26]. To clarify the role of the designed dynamic variables
in (3), the data release rate (DDR) is formally defined as DDR = released
data packets/sampled data packets. Statistical analysis reveals that the
DDR for DMETM is 35.8 %, whereas the memory-based ETM exhibits
a DDR of 54.8 %. A comparative analysis indicates that the continuous
fine-tuning of dynamic variables within the triggering rules significantly
enhances the dynamic scheduling of network data transmission. This ap-
proach not only ensures optimal system performance but also conserves
substantial network bandwidth.

5. Conclusion

This paper introduces an innovative memory-based dynamic ETM
to effectively address the challenge of ensuring both driving safety
and comfort in active QVSSs under deception attacks. To reduce the
data transmission workload and optimize transmitted information, a
memory-based dynamic ETM is proposed. Additionally, the asymptotic
stability in mean-square sense and H_, index of the system are ana-
lyzed using the Lyapunov-Krasovskii function method. The proposed
memory-based dynamic ETM not only minimizes false-triggered events
by leveraging average information but also enables dynamic schedul-
ing of network data transmission through the continuous adjustment of
dynamic variables in the triggering laws. Simulation results validate the
effectiveness of the proposed control protocol in enhancing both driving
comfort and safety. Future work will focus on optimizing the ETM for
suspension systems by integrating the latest results with approaches such
as those in [38], aiming to develop more flexible and efficient ETMs.
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