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Resilient Event-Triggered Formation Control and
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Abstract—This article studies the event-triggered forma-
tion control of multiple unmanned aerial vehicles (UAVs) in
the presence of deception attacks. Unlike existing research
focusing on deception attacks, the secure upper bound
of deception attacks that the formation tracking of UAVs
can tolerate is estimated to reduce the conservatism as-
sociated with the predefined upper bound of deception at-
tacks. A dynamic event-triggered mechanism is developed
by considering triggering and tracking errors to reduce data
release rates while maintaining desired formation track-
ing performance. Leveraging information from neighboring
UAVs, tracking control strategies for the multi-UAV system
facing deception attacks are designed using the Lyapunov
stability theory. Simulation analysis validates the effective-
ness of the proposed strategies, demonstrating improved
resilience in the presence of deception attacks.

Index Terms—Dynamic event-triggered mechanism
(DETM), formation tracking control, deception attacks,
unmanned aerial vehicles (UAVs).

I. INTRODUCTION

FORMATION control of multiple unmanned aerial vehi-
cles (UAVs) has received significant attention in civilian

and military fields due to their diverse applications, including
but not limited to forest fire monitoring, film and television
shooting, target search and localization, and reconnaissance
and combat [1], [2], [3]. Specifically in military applications,
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multi-UAVs are inevitably vulnerable to malicious attacks
launched by adversaries when executing high-risk tasks. Con-
sequently, the effective control of multi-UAV systems under
malicious attacks stands as a critical research challenge [4].

Numerous studies have focused on formation control analysis
for multi-UAV systems, considering factors, such as stochastic
noises, communication delays, and limited data rates. Among
the various control frameworks, the leader-follower-based ap-
proach has been extensively studied and implemented in UAV
formation control, as evidenced by the research efforts in [5],
[6], and [7]. Attaining longitudinal static stability and robust
formation control for heterogeneous UAVs using the nonlinear
observer-based method was discussed in [8]. Significant work on
formation tracking control using estimated states for unknown
leader velocity has been conducted, such as in [3] and [9]. De-
spite these efforts, the existing research predominantly focuses
on achieving time-invariant formations, limiting real-world ap-
plicability, such as obstacle avoidance. This article, therefore,
emphasizes the leader-following time-varying formation track-
ing control of multiple UAVs.

The time-triggered communication mechanism is a preva-
lent assumption in most of the literature above. However, the
event-triggered mechanism (ETM) for the formation tracking
controllers is more productive in saving the communication
bandwidth. The adoption of ETM is driven by the “neces-
sity” to the formation tracking performance, communication
and computation resources, and battery life by reducing data
transmission frequency, thus rendering it more suitable for
multi-UAV systems [10]. Consequently, event-based formation
control has garnered significant attention in recent years [11],
[12], [13], [14], [15]. Several types of ETMs, such as dy-
namic event-triggered mechanism (DETM), memory-ETM, and
segment-weighted information-based ETM, have been explored
in [16] and [17]. Under the DETM, the triggering threshold is
modulated with triggering and tracking errors, thereby optimiz-
ing communication network resources more effectively, as evi-
denced by works in [18] and [19]. However, the corresponding
results for DETM in multi-UAV formation control still need to be
improved. With the increasing application of UAVs, designing
an appropriate dynamic event-triggered scheme is significant
and necessary further to save the UAV communication network’s
limited resources.

The wireless communication network is crucial in a multi-
UAV system, as information interaction among neighboring
UAVs relies on the network. The communication network may
introduce time delay, packet loss [20], and disorder [21], and is
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vulnerable to cyber-attacks [22]. It is evident that the system’s
performance may deteriorate or even lead to paralysis when the
communication network of the control system is under attack.
Numerous recent research has focused on developing strategies
to mitigate cyber-attacks, as evidenced by works, such as [23],
[24], and[25]. For instance, event-based output feedback control
against deception attacks for networked systems was developed
in [26], where a Bernoulli stochastic variable was introduced to
describe the presence of deception attacks with predetermined
upper bounds. However, in the case of an unknown system, the
upper bound of the system against deception attacks needs to be
estimated rather than being a preassigned parameter. Similar to
the seismic rating of a building, estimating the upper bound
of the system against deception attacks becomes necessary.
Consequently, our study aims to analyze and model deception
attacks in multi-UAV systems while estimating the upper bounds
of cyber-attacks. This estimation will be used to mitigate the
effects of cyber-attacks on the multi-UAV system. This is one
of the primary motivations of this study.

Inspired by the discussions above, this study concentrates on
designing event-based formation tracking control for multi-UAV
systems under deception attacks. The key contributions of our
research are as follows.

1) A novel deception attack model that targets the multi-
UAV system is established. Unlike most of the conven-
tional approaches seen in most existing works on de-
ception attacks, where the upper bound of the attack is
preassigned, as in [19] and [24], this study presents an es-
timation of deception attacks. This estimation allows for
mitigating the adverse effects on the multi-UAV system.

2) A new adaptive law of threshold is devised for the DETM.
Different from existing communication mechanisms [12]
adhering to constant thresholds, the proposed approach
incorporates a variable triggering rule, whose adaptabil-
ity is determined by both triggering errors and tracking
errors. This dynamic adjustment strategy contributes to a
lower data release rate and less energy consumption.

3) A dynamic event-triggered formation tracking strategy is
put forward for multi-UAV systems in the presence of
deception attacks, ensuring that every UAV reaches its
desired position and completes this formation.

Such a control strategy has the potential to reduce controller
update frequency without compromising the tracking perfor-
mance of UAVs.

The rest of this article is organized as follows. Section II
presents the preliminaries and the model of dynamic event-
triggered formation control for multi-UAV systems under de-
ception attacks. Section III provides the stability analysis and
the control synthesis condition. Section IV illustrates the effec-
tiveness of our proposed strategy through a simulation example.
Finally, Section V concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The communication topology among all UAVs in a system
could be described as a directed graph F = (V ,B,C), in which

Fig. 1. Quadrotor configuration frame system.

B ⊆ {(i, j), i, j ∈ V} and V ∈ {1, 2, . . . , N} stand for the set
of edges and nodes. Edge (i, j) ∈ B denotes that the jth UAV
can gain data from the ith UAV. The adjacency matrix is denoted
as C = [cij ]N×N , wherein cii = 0 and cij = 1 if (j, i) ∈ B,
and cij = 0, otherwise. The Laplacian matrix is defined as
L = [Lij ]N×N with Lii =

∑N
j=1,j �=i cij , Lij = −cij for i �= j.

Let Ai = {j|(i, j) ∈ B} for the ith UAV, which is a set involving
all its neighbors.

In a leader-following configuration, the follower UAVs are
represented as 1, 2, . . . , N , and the leader is labeled by an extra
node 0. These data of the leader could be acquired by the ith
follower UAV, which is described as bi = 1; otherwise, bi = 0.
Denote B = diag{b1, . . . , bN}. Besides, there exists a directed
spanning tree in topology graph F with UAV 0 as the root node.

B. Modeling of a Multi-UAV System

The structure of a quadrotor UAV, including four rotors and
one rigid cross frame, is illustrated in Fig. 1. The relationship
between the four inputs (the lifts Fq , q ∈ {1, 2, 3, 4} produced
by four motors) and six output variables [position coordinates
(x, y, and z), pitch θ, roll φ, and yaw ψ] is elaborated in [6].
The control scheme of the quadrotor UAV is composed of inner
loop and outer loop controls [6]. This research concentrates on
the formation tracking control (outer loop control) of multiple
quadrotor UAVs.

Let us consider a multi-UAV system comprising one leader
and N followers, with their dynamic equations described as

ẋi(t) = Axi(t) +Bui(t) (1)

where xTi (t) = [ζTi (t) v
T
i (t)], i = 0, 1, 2, . . . , N , in which

ζi(t) ∈ Rq and vi(t) = ζ̇i(t) stand for the position and the
velocity of the ith UAV, respectively; ui(t) denotes the input

of the controller; A =
[
0 I3
0 0

]
and B =

[
0
I3

]
.

Remark 1: In this study, we mainly focus on the kinematic
model of multi-UAV systems, which involves position ζi(t) and
velocity vi(t), whereas the dynamic model, which studies the
attitude of UAVs (describing changes in pitch, roll, and yaw),
can be seen in [1].

The time-varying formation for the followers is de-
scribed by f(t) = [fT1 (t), fT2 (t), . . . , fTN (t)]T with fi(t) =

[fTζi(t), f
T
vi(t)]

T and fvi(t) = ḟζi(t). For the ith follower (i ∈
{1, 2, . . . , N} � Γ), fζi(t) (fvi(t)) represents its relative po-
sition (velocity). Denote Ψi(t) = fi(t) + x0(t) as its desired
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state, where Ψi(t) =
[
ΨT

ζi(t),Ψ
T
vi(t)

]T
. The tracking error is

represented as x̄i(t) = xi(t)−Ψi(t).

C. Deception Attacks

The data transmission among neighboring UAVs is via the
communication network. The vulnerability of the communica-
tion network gives rise to various security threats, such as de-
ception attacks. In the absence of deception attacks, the relative
information received by the ith UAV could be stated as

ξi(t) =
∑
j∈Ai

ξij(t) (2)

where ξij(t) = cij [xi(t)− fi(t)− (xj(t)− fj(t))].
Given the presence of potential deception attacks launched by

malicious adversaries, the actual relative information received
by the ith UAV is rewritten as

ξi(t) =
∑
j∈Ai

[ξij(t) + μij(t)ξij(t)] (3)

where μij(t) (i, j ∈ Γ, i �= j) is composed by unknown time-
varying continuous functions to undermine the formation track-
ing performance.

For real constant μ̄ > 0, μij(t) satisfies

−μ̄ ≤ μij(t) ≤ μ̄. (4)

Remark 2: From (3), it is evident that μij(t) �= 0 implies
the occurrence of deception attacks. In such a scenario, the
relative signal acquired by the ith UAV is paraded in (3). On the
other hand, μij(t) = 0 signifies the absence of any deception
attacks, enabling each UAV to receive the actual relative states,
as described in (2).

Define a Laplacian matrix as W = [wij ]N×N , whereinwii =∑N
j=1,j �=i c̃ij with c̃ij = cijμij(t) = −wij .
The following lemma is essential to obtain the main results.
Lemma 1: Under the inequalities in (4), for a given directed

graph F , the following inequality is satisfied:

‖W‖ ≤ μ̄γ (5)

where γ = (supNi=1 sup
N
j=1 |Lij |2) 1

2 is a constant for the graph
F .

Proof: Recollect the matrix W in the form

W =

⎡
⎢⎢⎣
w11 · · · w1N

...
...

...

wN1 · · · wNN

⎤
⎥⎥⎦ .

On the basis of the definition of L, it is easy to obtain that

‖W‖ =

⎛
⎝ N∑

i=1

N∑
j=1

w2
ij

⎞
⎠

1
2

≤ μ̄

⎛
⎝ N∑

i=1

N∑
j=1

L2
ij

⎞
⎠

1
2

≤ μ̄γ. (6)

That ends the proof.�

D. Design of the DETM

In this research, the DETM is employed to update control
input signals, achieving the purpose of minimizing redundant
transmission data. The threshold of the designed mechanism is
adaptable and relies on tracking and triggering errors. For a clear
description of the DETM, we define the triggering instants of
the ith UAV as 0 ≤ ti0 < ti1 < · · · < tiδ < tiδ+1 < · · · . The event
generator functions Πi(·, ·) : Rq × R → R (i ∈ Γ) are chosen
as follows:

Πi(ϕi(t), x̄i(t
i
δ)) = ϕT

i (t)Wiϕi(t)− ςi(t)x̄
T
i (t

i
δ)Wix̄i(t

i
δ)
(7)

where the triggering error ϕi(t) = x̄i(t
i
δ)− x̄i(t), t ∈

[tiδ, t
i
δ+1); matrix Wi > 0 will be determined via Algorithm 1;

the threshold ςi(t) = φie
−αi‖x̄i(t)−x̄i(t

i
δ)‖ + βi with constants

αi ≥ 0, φi > 0, and βi ≥ 0, and they satisfy φi + βi ∈ [0, 1],
which yields that ςi(t) ∈ [0, φi + βi] ∈ [0, 1]. It is assumed
that the leader UAV does not employ such a communication
mechanism in this research.

Then, the next triggering instant is developed as

tiδ+1 = inf
t>tiδ

{t|Πi(ϕi(t), x̄i(t
i
δ)) > 0}. (8)

Moreover, the triggered signal is

x̄i(t
i
δ) = x̄i(t) + ϕi(t). (9)

Remark 3: The threshold ςi(t) of the DETM in (8) relies
on the dynamic error between the current input data x̄i(t) and
the latest released data x̄i(t

i
δ). As the error converges to 0,

signifying the asymptotic stability of the UAV system upon
completion of the formation task, the threshold ςi(t) remains
constant. Consequently, the threshold remains modulated based
on the dynamic error until it reaches zero.

Remark 4: In the DETM (8), setting αi = 0 and βi �= 0
reduces to the case, as described in [12], while setting αi = 0
and βi = 0 will turn to the general time-triggered scheme.

Remark 5: Some novel ETMs, such as those in [13] and [17],
have been investigated in previous studies. In this study, the
DETM is employed as the primary focus is on estimating the
secure upper bound for deception attacks in formation tracking.

E. Formation Control Strategies

This research proposes a formation control strategy for the
system (1) to achieve the desired formation. Thanks to the
DETM, the control inputui(t) = ui(t

i
δ) for t ∈ [tiδ, t

i
δ+1), i ∈ Γ.

Moreover, the dynamic event-based formation control strategies
are designed as

ui(t) = biK1x̄i(t
i
δ) + Ψ̇vi(t)

+K2

∑
j∈Ai

(cij + c̃ij)[x̄i(t
i
δ)− x̄j(t

j
δ′)] (10)

where K1 and K2 are controller gains to be determined; Ψ̇vi(t)
is the desired acceleration; x̄j(t

j
δ′) represents the latest deliv-

ered measurements from the jth UAV; δ′ � argminδ′ {t− tjδ′ |t >
tjδ′ , δ

′ = 0, 1, 2, 3, · · · }.
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Invoking (10) into (1) yields the following tracking error
system:

˙̄xi(t) = (A+BK1bi)x̄i(t)

+BK2

∑
j∈Ai

(cij + c̃ij)[x̄i(t
i
δ)− x̄j(t

j
δ′)]. (11)

Combining (9) and (11) and using the Kronecker product
follow the closed-loop formation tracking system:

˙̄x(t) = (Ã+ B̃B̃K̃1)x̄(t) + L̃B̃K̃2[x̄(t) + ϕ(t)]

+ R̃B̃K̃2[x̄(t) + ϕ(t)] (12)

where Ã = IN ⊗A, B̃ = IN ⊗B, K̃ι = IN ⊗Kι, ι = 1, 2,
L̃ = L ⊗ I6, B̃ = B ⊗ I6, R̃ = R⊗ I6, x̄(t) = colN{x̄i(t)},
and ϕ(t) = colN{ϕi(t)}. Here, col N{·} stands forN -columns
vector; coliN{·} indicates N -columns vector with only the i
th nonzero column. IN represents the (N ×N )-dimensional
identity matrix, and it is abbreviated as I occasionally.

III. MAIN RESULTS

In this section, the stability of event-triggered formation
control for multi-UAV systems under deception attacks will be
analyzed first.

Theorem 1: For known controller gains K1 and K2, system
(12) is asymptotically stable if there exists positive definite
matrix P̃ such that the following inequality holds:

Θ =

[
Θ11 ∗

K̃T
1 B̃

T B̃T P̃ + K̃T
2 B̃

T L̃T P̃ −W

]
≤ −I. (13)

Moreover, the upper bound of the attack signal is estimated by

|μij(t)| ≤ μ̄ =
1

2γ‖P‖‖B‖‖K2‖‖H3‖ (14)

for i ∈ Γ and j ∈ Ai, where

Θ11 = sym{P̃ B̃B̃K̃1 + P̃ Ã+ P̃ L̃B̃K̃2}+ (φ+ β)W

φ = φ0 ⊗ I6, φ0 = diag{φ1, φ2, . . . , φN}
β = β0 ⊗ I6, β0 = diag{β1, β2, . . . , βN}
W = diag{W1,W2, . . . ,WN}.

Proof: The proof comprises two parts: The stability of the
discussed system is analyzed in Step A, and the exclusion of
Zeno phenomenon in the DETM is outlined in Step B.

Step A: The time-varying Lyapunov function candidate in the
following form is selected for system (12):

V (t) = x̄T (t)P̃ x̄(t) (15)

with P̃ = IN ⊗ P .
By calculating the derivation of (15), one can get

V̇ (t) = 2x̄T (t)P̃ ˙̄x(t)

= 2x̄T (t)P̃ (Ã+ B̃B̃K̃1)x̄(t)

+ 2x̄T (t)P̃ (B̃B̃K̃1 + L̃B̃K̃2)ϕ(t)

+ 2x̄T (t)P̃ R̃B̃K̃2[x̄(t) + ϕ(t)]

≤ 2x̄T (t)P̃ (Ã+ B̃B̃K̃1 + L̃B̃K̃2)x̄(t)

+ 2x̄T (t)P̃ (B̃B̃K̃1 + L̃B̃K̃2)ϕ(t)

+ 2μ̄γx̄T (t)P̃ B̃K̃2[x̄(t) + ϕ(t)]. (16)

Based on (8), we have

(φ+ β)x̄T (t)Wx̄(t)− ϕT (t)Wϕ(t) < 0. (17)

Combining (16) and (17) and leveraging Schur complement
follow that:

V̇ (t) ≤ χT (t)Θχ(t)− 2μ̄γ‖P‖‖B‖‖K2‖[x̄(t) + ϕ(t)] (18)

where χ(t) = [x̄T (t), ϕT (t)]T .
Employing Lemma 1 and (13), one has

V̇ (t) ≤ − (1 − 2μ̄γ‖P‖‖B‖‖K2‖‖H3‖)χT (t)χ(t)

where H3 = HT
1 H1 +HT

1 H2, H1 = [I 0], and H2 = [0 I].
It follows from (14) that

V̇ (t) ≤ −χT (t)χ(t). (19)

Furthermore, one can get xi(t) → fi(t) + x0(t) as t→ +∞,
which means that all the UAVs can achieve the desired forma-
tion.

Step B: The avoidance of the Zeno behavior will be discussed
in the following.

Denote � = argmaxi ‖ ϕi(t) ‖ (i ∈ Γ). Then, one can get ‖
ϕi(t) ‖ ≤‖ ϕ(t) ‖. Moreover, we have ‖ ϕ�(t) ‖ / ‖ x̄�(t) ‖≤
(
√
N ‖ ϕ(t) ‖)/‖ x̄(t) ‖. ε� signifies the time interval for

‖ ϕ�(t) ‖ /‖ x̄�(t) ‖ increasing from zero to (φi + βi), and
ε∗ is the time interval from zero to (

√
N ‖ ϕ(t) ‖)/‖ x̄(t) ‖.

Calculating the time derivative of ‖ ϕ(t) ‖/‖ x̄(t) ‖ yields that

d
dt

‖ ϕ(t) ‖
‖ x̄(t) ‖ = − ϕT (t) ˙̄x(t)

‖ ϕ(t) ‖‖ x̄(t) ‖ − ϕ(t)x̄T (t) ˙̄x(t)

‖ x̄(t) ‖2‖ x̄(t) ‖

≤
(

1 +
‖ ϕ(t) ‖
‖ x̄(t) ‖

)

×
(
‖ Φ1 ‖ + ‖ Φ2 ‖ ‖ ϕ(t) ‖

‖ x̄(t) ‖ + τsup

)
(20)

where Φ1 = Ã+ B̃B̃K̃1 + L̃B̃K̃2 + R̃B̃K̃2, Φ2 = L̃B̃K̃2 +

R̃B̃K̃2, and τsup = sup{‖(L̃B̃K̃2+R̃B̃K̃2)ϕ(t)‖
‖x̄(t)‖ } (‖ x̄(t) ‖�= 0).

Let κ = ‖ ϕ(t) ‖/‖ x̄(t) ‖, then (20) can be rewritten
as κ̇ ≤ (1 + κ)(‖ Φ1 ‖ + ‖ Φ2 ‖ κ+ τsup). Assume that σ̇ =
(1 + σ)(‖ Φ1 ‖ + ‖ Φ2 ‖ σ + τsup) has a solution σ(t, σ0)with
σ(0, σ0) = σ0. As a result, one has κ ≤ σ(t, σ0). Suppose that
the system begins at the first triggered, we can get σ0 = 0. Then,
the smallest time interval could be derived through calculating
the time of the following equality: dσ

(1+σ)(‖Φ1‖+‖Φ2‖σ+τsup)
= dt.

Denoting ε as the solution of the equality yields that

ε =
1

‖ Φ1 ‖ + ‖ Φ2 ‖ σ + τsup

× ln

[
(‖ Φ1 ‖ +τsup)σ(t, 0)+ ‖ Φ1 ‖ +τsup

‖ Φ2 ‖ σ(t, 0)+ ‖ Φ1 ‖ +τsup

]
. (21)
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Algorithm 1: Controller Gains and the Estimation of Upper
Bound of Deception Attack.

Letting σ(t∗, 0) =
√∑N

i=1 φi/N follows that

ε∗ =
1

‖ Φ1 ‖ + ‖ Φ2 ‖ σ + τsup

× ln

[
(‖ Φ1 ‖ +τsup)σ(t

∗, 0)+ ‖ Φ1 ‖ +τsup
‖ Φ2 ‖ σ(t∗, 0)+ ‖ Φ1 ‖ +τsup

]
. (22)

Based on the above analysis, it can be deduced that 0 < ε∗ ≤
ε�, indicating the avoidance of Zeno behavior of the proposed
DETM. This ends the proof.�

Remark 6: μ̄ in (4) denotes the estimated upper bound for
deception attacks. Unlike most existing research, such as in [19]
and [24], the upper bound is assumed to be satisfied a Lipschitz
condition with a given upper bounded. As seen in (14), the upper
bound can be estimated and incorporated into the formation con-
trol design, playing a critical role in secure formation tracking.
While Theorem 1 provides a sufficient condition to ensure secure
formation tracking, more precise estimates of the secure upper
bound will be explored in future work.

Following the outcomes in Theorem 1, Algorithm 1 presents
the process of obtaining the controller gains, triggering matrices,
and estimating the upper bound of deception attacks.

The matrices mentioned in Algorithm 1 are presented as
follows:

Θ̃ =

[
Θ̃11 ∗
Θ̃21 −W

]
(23)

Θ̄ =

[
Θ̄11 ∗

Ỹ T
1 B̃T + Ỹ T

2 L̃T + μ̄γỸ T
2 −W

]
< 0 (24)

where

Θ̃11 = sym{P̃ B̃B̃K̃1 + P̃ Ã+ P̃ L̃B̃K̃2 + μ̄γP̃ B̃K̃2}
+ (φ+ β)W

Θ̃21 = K̃T
1 B̃

T B̃T P̃ + K̃T
2 B̃

T L̃T P̃ + μ̄γK̃T
2 B̃

T P̃

Fig. 2. Topology graph.

Θ̄11 = sym{P̃ Ã+ B̃Ỹ1 + L̃Ỹ2 + μ̄γỸ2}+ (φ+ β)W.

IV. EXAMPLE

This section provides a multi-UAV system comprising fol-
lower UAVs 1–6 and a single leader. The topology graph describ-
ing the data communication among these UAVs is displayed in
Fig. 2, from which one knows that B = I6 and

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 −1 1 0 0

0 0 0 −1 2 −1

0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 7: Fig. 2 presents one type of communication topol-
ogy of the multi-UAV system, where there exists a directed
spanning tree with the leader UAV as the root node. In such a
situation, controller gains, triggering matrices, and the estimated
upper bound of deception attacks are obtained by employing
Algorithm 1 with appropriate parameter values in MATLAB.
Other topologies satisfying this condition could be discussed
and simulated similarly.

Six UAVs are configured to maintain a time-varying hexag-
onal formation on the XOY plane, revolving around the lead-
ing UAV with the trajectory [−2 cos(0.2t), 2t, 3t]T . The state
xi(t) and control input ui(t) for the ith UAV are represented
as xi(t) = [ζiX(t), ζiY (t), ζiZ(t), viX(t), viY (t), viZ(t)]

T and
ui(t) = [uiX(t), uiY (t), uiZ(t)]

T (i ∈ {1, 2, 3, 4, 5, 6} � Γ6).
The time-varying formation is specified by

fζi(t) =

⎡
⎢⎣3 cos(0.8t+ π

3 (i− 1))

3 sin(0.8t+ π
3 (i− 1))

0

⎤
⎥⎦ .

Let φ1 = 0.01, φ2 = 0.012, φ3 = 0.013, φ4 = 0.008, φ5 =
0.011, φ6 = 0.015, α1 = 0.2, α2 = 0.3, α3 = 0.1, α4 = 0.25,
α5 = 0.4,α6 = 0.15, β1 = 0.01, β2 = 0.012, β3 = 0.013, β4 =
0.008, β5 = 0.011, and β6 = 0.015. Using Algorithm 1, we can
get the following parameters:

Kl = Kl0 ⊗ I3, l ∈ {1, 2}
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Fig. 3. Tracking position/velocity errors of six UAVs.

Fig. 4. Tracking trajectories of UAVs 1–6 and the leader with position
snapshots at t = 10, 30, and 50 s.

K10 =
[
−0.4768 −0.4290

]
,K20 =

[
0.0804 0.0724

]
Wi =Wi0 ⊗ I3, i ∈ Γ6

W10 =

[
8.7536 − 0.0142

−0.01428.7617

]
,W20 =

[
8.7487 − 0.0170

−0.01708.7584

]

W30 =

[
8.7462 − 0.0184

−0.01848.7568

]
,W40 =

[
8.7584 − 0.0113

−0.01138.7648

]

W50 =

[
8.7351 − 0.0257

−0.02578.7497

]
,W60 =

[
8.7411 − 0.0213

−0.02138.7533

]
.

The initial position of six UAVs are assumed by ζ1(0) =
[4, 2, 2.2]T , ζ2(0) = [5, 1, 1.2]T , ζ3(0) = [6, 4.5, 4.8]T ,
ζ4(0) = [3, 2.5, 2.9]T , ζ5(0) = [3, 2.49, 2.91]T , and ζ6(0) =
[3, 2.51, 2.89]T . Based on the above control gains, the simulation
results shown in Figs. 3–8 can be generated, wherein Fig. 5
displays the control input. Under such a designed control,
the tracking position/velocity errors are presented in Fig. 3,
indicating the asymptotic stability of the UAV system despite
the deception attacks. Each UAV reaches its designated position

Fig. 5. Control inputs of six UAVs.

Fig. 6. Thresholds ςi(t) (i ∈ Γ6) of the DETM.

and successfully completes the formation task. The tracking
trajectories of each UAV are shown in Fig. 4 with position
snapshots captured at time intervals of 10, 30, and 50 s.
Fig. 6 exhibits the trajectories of the thresholds ςi(t) (i ∈ Γ6)
of the DETM, from which one can see that the thresholds
ςi(t) (i ∈ Γ6) are adaptively modulated based on the tracking
errors and triggering errors rather than preset constants and
finally converge to 0.02, 0.024, 0.026, 0.016, 0.022, and 0.03,
respectively. Figs. 7 and 8 depict the six UAVs’ triggering
instants and releasing intervals. These figures demonstrate
the effectiveness of the designed DETM in saving network
resources by discarding data that violates triggering conditions,
while ensuring UAV tracking performance.

Theorem 1 not only presents the conditions for ensuring the
tracking performance, but also evaluates the upper bound of
deception attacks. In this example, the estimated upper bound
is calculated as 0.1187. This estimation serves as a reference of
secure value, as exceeding this secure value poses a risk to the
UAV formation. This is illustrated in Fig. 9.

Furthermore, a comparison is made between our proposed
method and the secure formation control method in [25], which

Authorized licensed use limited to: Anhui Polytechnic University. Downloaded on May 25,2025 at 02:13:31 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: RESILIENT EVENT-TRIGGERED FORMATION CONTROL AND SECURE ESTIMATION OF MULTI-UAV SYSTEMS 4921

Fig. 7. Release instants and intervals of UAVs 1–3.

Fig. 8. Release instants and intervals of UAVs 4–6.

relies on predefined upper limits of deception attacks. In im-
plementing the control method from [25], the upper bound of
the deception attack is set to 0.08. Under conditions identical
to those depicted in Figs. 3 and 10 exhibit the tracking po-
sition/velocity errors for six UAVs with the secure formation
control method in [25]. Figs. 3 and 10 demonstrate that the
multi-UAV system achieves the formation flight objective using
these formation control methods. However, the estimated upper
bound for deception attacks, which is calculated as 0.1187,
exceeds the upper bound of 0.08 set in [25]. This highlights
the proposed method’s ability to mitigate the adverse effects on
the UAV system and reduce the conservatism in the design of
the formation control strategy.

By setting different values for the triggering parameters αi,
βi, and φi (i ∈ Γ6), the number of triggering events (NTE)
generated by the ETMs is recorded in Table I, while keeping
the other parameters the same, as in Fig. 3. For brevity, only the
results for UAV 1 are presented, as the findings for UAVs 2–6
are similar. From Table I, it can be observed that larger values
of βi, φi, and αi result in fewer triggering events. Furthermore,

Fig. 9. Tracking position/velocity errors of six UAVs with μ̄ = 0.15.

Fig. 10. Tracking position/velocity errors of six UAVs with the secure
formation control method in [25].

TABLE I
NTE FOR UAV 1 UNDER DIFFERENT TRIGGERING PARAMETERS

βi and φi significantly affect the NTE, while αi has a relatively
smaller impact.

Next, we aimed to demonstrate the effectiveness of the pro-
posed DETM in reducing redundant triggering events compared
to the ETM with constant thresholds proposed in [12]. In the
ETM in [12], the sampling period is 0.05 s. Under the same
conditions and parameters as the previous simulation, Fig. 11
displays the responses of the tracking position/velocity error
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Fig. 11. Tracking position/velocity error and release intervals for the
first UAV with the ETM in [12].

TABLE II
NTE FOR SIX UAVS UNDER DIFFERENT ETMS

and release intervals of UAV 1 under the ETM. For brevity, only
the results for UAV 1 are presented, as those for UAVs 2–6 have
analogous results. Table II presents the NTE generated by the
ETMs above for all six UAVs.

The results depicted in Figs. 3 and 11 indicate that the trajec-
tories of the tracking position/velocity errors for UAV 1 using
both ETMs were similar. However, as shown in Table II, the NTE
for UAVs 1–6 under the developed DETM (8) were significantly
reduced by 33.4%, 31.9%, 29.3%, 34.6%, 34.7%, and 33.1%,
respectively, compared to that generated by the ETM in [12]
with the sampling periodh = 0.05 s. This reduction in triggering
events illustrates the effectiveness of our DETM in mitigating
the bandwidth burden of the UAV communication network.

V. CONCLUSION

In this study, we have tackled the challenge of dynamic
event-based formation control for multi-UAVs operating under
deception attacks, taking into account an estimated upper bound
on deception attacks. Distinguishing our methodology from ex-
isting literature focused on deception attacks with predetermined
upper bounds, we estimate the maximum attack redundancy
capable of ensuring the tracking performance of multi-UAVs.
The formulated formation control strategies for UAVs under
deception attacks were tailored to fulfill the specific formation
tasks assigned to each UAV. Simulation results effectively show-
case the effectiveness of the proposed approach in achieving
formation stabilization and precise tracking control. In this

study, the estimated upper bound of deception attacks serves
as a reference of secure for maintaining UAV formation under
the designed control strategy. Future research will focus on
finding a more accurate estimation of the secure upper bound
for deception attacks.
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